
Journal of Hydrology 420–421 (2012) 216–227
Contents lists available at SciVerse ScienceDirect

Journal of Hydrology

journal homepage: www.elsevier .com/locate / jhydrol
SAC-SMA a priori parameter differences and their impact on distributed
hydrologic model simulations

Ziya Zhang a,⇑, Victor Koren a, Seann Reed a, Michael Smith a, Yu Zhang a,
Fekadu Moreda b, Brian Cosgrove a

a Office of Hydrologic Development, NOAA/NWS, Silver Spring, MD 20910, USA
b Water and Ecosystems Management, RTI International, 3040 Cornwallis Road, Research Triangle Park, NC 27709, USA
a r t i c l e i n f o

Article history:
Received 29 April 2011
Received in revised form 18 November 2011
Accepted 2 December 2011
Available online 13 December 2011
This manuscript was handled by
Andras Bardossy, Editor-in-Chief, with the
assistance of Vazken Andréassian, Associate
Editor

Keywords:
SSURGO
STATSGO
SAC-SMA
A priori parameters
Distributed modeling
0022-1694/$ - see front matter Published by Elsevier
doi:10.1016/j.jhydrol.2011.12.004

⇑ Corresponding author. Address: Office of Hyd
National Weather Service, 1325 East West Highway
MD 20910, USA. Tel.: +1 301 713 0640x158; fax: +1 3

E-mail address: Ziya.Zhang@noaa.gov (Z. Zhang).
s u m m a r y

Deriving a priori gridded parameters is an important step in the development and deployment of an
operational distributed hydrologic model. Accurate a priori parameters can reduce the manual calibration
effort and/or speed up the automatic calibration process, reduce calibration uncertainty, and provide
valuable information at ungauged locations. Underpinned by reasonable parameter data sets, distributed
hydrologic modeling can help improve water resource and flood and flash flood forecasting capabilities.
Initial efforts at the National Weather Service Office of Hydrologic Development (NWS OHD) to derive a
priori gridded Sacramento Soil Moisture Accounting (SAC-SMA) model parameters for the conterminous
United States (CONUS) were based on a relatively coarse resolution soils property database, the State Soil
Geographic Database (STATSGO) (Soil Survey Staff, 2011) and on the assumption of uniform land use and
land cover. In an effort to improve the parameters, subsequent work was performed to fully incorporate
spatially variable land cover information into the parameter derivation process. Following that, finer-
scale soils data (the county-level Soil Survey Geographic Database (SSURGO) (Soil Survey Staff,
2011a,b), together with the use of variable land cover data, were used to derive a third set of CONUS,
a priori gridded parameters. It is anticipated that the second and third parameter sets, which incorporate
more physical data, will be more realistic and consistent. Here, we evaluate whether this is actually the
case by intercomparing these three sets of a priori parameters along with their associated hydrologic sim-
ulations which were generated by applying the National Weather Service Hydrology Laboratory’s
Research Distributed Hydrologic Model (HL-RDHM) (Koren et al., 2004) in a continuous fashion with
an hourly time step. This model adopts a well-tested conceptual water balance model, SAC-SMA, applied
on a regular spatial grid, and links to physically-based kinematic hillslope and channel routing models.
Discharge and soil moisture simulated using the different set of parameters are presented to show
how the parameters affect the results and under what conditions one set of parameters works better than
another. In total, 63 basins ranging in size from 30 km2 to 5224 km2 were selected for this study. Sixteen
of them were used to study the effects of different a priori parameters on simulated flow. Simulated
hourly flow time series from three cases were compared to hourly observed data to compute statistics.
Although the overall statistics are similar for the three different sets of parameters, improvements in sim-
ulated flow are observed for small basins when SSURGO-based parameters are used. Fifty-seven basins
covering different climate regimes were used to analyze differences in the modeled soil moisture. Results
again showed that the use of SSURGO-based parameters generate better soil moisture results when com-
pared to STATSGO-based results, especially for the upper soil layer of smaller basins and wet basins.

Published by Elsevier B.V.
1. Introduction

Hydrologic models typically need to be calibrated in order to
achieve the simulation accuracy acceptable for operational river
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forecasting. Often, different calibrators may derive slightly differ-
ent parameter data sets due to various factors including data sets
and objective functions used in calibration, level of experience and
personal approach to calibration. Furthermore, the overall simula-
tion statistics can be similar from different parameter sets in the
same basin, reflecting the equifinality concept discussed by many
(e.g., Beven, 2006)—yet one set of parameters may be superior and
more robust due to greater spatial consistency and more realistic
representation of hydrologic processes. Lack of attention to the
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physical properties of basins and regional variations can limit the
transferability of parameters and the consistency of model perfor-
mance across basins in a region. This problem is due, in part, to the
high levels of uncertainty in the initial parameter values used at
the start of the calibration process. Because there are dependences
between parameters, if initial parameters are highly uncertain, the
calibration results could vary a lot depending on who does the
manual calibration. As Kuzmin et al. (2009) indicated in a study
of automatic calibration algorithm, with an informative and spatial
variability of priori estimated parameters, one can speed up
calibration process using one of filtering, i.e., improving the a priori
estimates based on observed data (typically precipitation and
streamflow), rather than one of bounded global optimization as
in traditional automatic model calibration. While problematic in
a lumped modeling environment, the issue will be of even greater
concern with distributed modeling where spatially varying
gridded parameter sets are required. With this in mind, better
initial parameter estimation for hydrological modeling is impor-
tant. It can either speed up the calibration process or improve
simulations for ungauged basins (Koren et al., 2000; Carpenter
and Georgakakos, 2004). By reducing the subjectivity in the
calibration process, the resulting model parameters will be more
reliable and consistent and will exhibit a reasonable variation of
value over a large region or different regions (e.g., Koren et al.,
2006). Physically derived initial parameters can help constrain
the calibration process and mitigate the issues of data sets and
personal approach mentioned above.

With the increased availability of spatially detailed data and
computer processing power, and the ever increasing demand for
localized information, more and more distributed hydrological
models are being developed and applied for research and opera-
tional use (Leavesley et al., 1983; Abbott et al., 1986; Wigmosta
et al., 1994; Bell and Moore, 1998; Koren et al., 2004; to name a
few). Such is the case in the National Weather Service (NWS),
where, historically, lumped implementations of the Sacramento
Soil Moisture Accounting model (SAC-SMA) have been used for
river forecasting. Recently, NWS hydrologists have started using
a finer scale, distributed hydrologic model for improved river
and flash flood forecasting, as well as for producing prototype
gridded soil moisture and temperature products. The system used
is the National Weather Service Hydrology Laboratory’s Research
Distributed Hydrologic Model (HL-RDHM) (Koren et al., 2004).
HL-RDHM in this study uses the heat transfer version of SAC-
SMA (SAC-HT; Koren et al., 2006) to model rainfall-runoff pro-
cesses including soil moisture, and kinematic routing for hillslope
and channel routing in an hourly, continuous mode for several
years.

One of the challenges facing distributed modeling efforts is to
have a set of initial parameters that is based on a basin’s physical
properties, so that either a smaller number of parameters will re-
quire calibration, or minimum manual or automatic calibration
will be required. Addressing this challenge, Koren et al. (2000)
developed a systematic approach to derive eleven SAC-SMA
parameters from soil and land use properties. In the initial imple-
mentation of the method, they used the State Soil Geographic
Database (STATSGO) to derive the parameters for the contermi-
nous United States (CONUS). The STATSGO data are available at a
scale of 1:250,000. The soil polygons defined in the STATSGO data
set typically range in the size from about 100 to 200 km2. Although
the method of Koren et al. (2000) allows one to account for differ-
ent land use types, they derived initial CONUS parameters assum-
ing that the land cover/land use across the United States is
‘‘pasture or range land use’’ under ‘‘fair’’ hydrologic conditions.
The only spatially variable inputs were soil texture and hydrologic
soil group. Subsequent work has shown that when spatially vari-
able land cover data are incorporated into the process, more phys-
ically meaningful parameters can be derived (Anderson et al.,
2006), although their results were based on lumped simulations
on a selected few basins.

While the STATSGO-based gridded parameters provide a good
estimate of initial values for distributed modeling as shown in
the Distributed Model Intercomparison Project (DMIP) (Smith
et al., 2004; Reed et al., 2004; Koren et al., 2004), there are a few
shortcomings that limit their application. In addition to the con-
stant land cover and land use assumption in the STATSGO based
gridded parameters estimation used in the DMIP, the STATSGO
data offer less detailed soil information. A map unit in STATSGO
can contain a large number of components. When a distributed
model is applied to basins less than 100 km2 (the case for most
flash flood scenarios), the parameters based on 100–200 km2 soil
polygon texture information may not resolve spatial variations
within the basin and therefore may not accurately depict runoff
process. Serving as a solution to this resolution problem, the Natu-
ral Resources Conservation Service (NRCS) also develops and main-
tains the Soil Survey Geographic Database (SSURGO) data in which
the data resolution is approximately 10 times higher than that of
STATSGO. The digitization of SSURGO data is nearly complete for
most of the CONUS. By using this high-resolution soil data, a new
set of gridded SAC-SMA parameters can be derived (Zhang et al.,
2011). Based on STATSGO and SSURGO soil data and different land
cover assumptions, we can derive three different sets of 11 of the
16 gridded SAC-SMA model parameters. The three different param-
eter sets are based on (1) STATSGO soil data plus ‘‘uniform land
cover’’ assumption (STATSGO ONLY case), (2) STATSGO soil data
plus use of variable land cover (STATSGO + LULC case), and (3)
SSURGO soil data plus use of variable land cover (SSURGO + LULC
case). Because the STATSGO ONLY and STATSGO + LULC cases differ
only in their use of land cover data, it is expected that the main dif-
ferences would be in those parameters associated with the upper
zone. In this paper, parameter comparisons between these three
sets are presented for the CONUS and selected basins. We will con-
centrate on the impacts of these different a priori parameter sets on
hydrologic simulations.

Several published papers, described below, feature comparisons
between STATSGO- and SSURGO-based parameters and detail how
use of the parameter data sets affects simulated discharge and soil
moisture. In comparing outlet stream flow simulations using
STATSGO-based and SSURGO-based parameters for the Little
Washita watershed (600 km2) in Oklahoma, Reed (1998) found
that there was not much difference between the two cases. Using
soils data, Reed (1998) estimated runoff model parameters for
the Green and Ampt infiltration equation and a simple percolation
model. Part of the reason for the small simulation differences was
that the overall surface soil texture distribution, and hence the
model parameters defined by the STATSGO and SSURGO data, were
similar for this basin. In related research, Anderson et al. (2006)
derived basin-averaged STATSGO-based and SSURGO-based
SAC-SMA parameters for use by the lumped SAC-SMA model in
simulations over several basins within the National Weather
Service’s (NWS) Ohio River Forecast Center and the West Gulf
RFC domains. They found that use of SSURGO-based parameters
improved the simulation of basin-outlet flow for basins where
there was a noticeable difference in soil texture distributions be-
tween STATSGO and SSURGO data sets. The TOPMODEL has also
been used to investigate the impact of parameter estimates on sim-
ulated streamflow. In particular, Williamson and Odom (2007)
used the TOPMODEL for the prediction of streamflow in the South
Fork of the Kentucky River near Booneville, Kentucky (area of
1938 km2) using soil properties from STATSGO and SSURGO data
sets. Results show that use of SSURGO-based data produced more
accurate streamflow output as compared to the use of STATSGO-
based data.



Table 1
Basins for discharge comparison.

No. Short name Station name Area (km2)

1 SPRINGT Flint Creek at Springtown, AR 37
2 WSILO Sager Creek near West Siloam Springs, OK 49
3 CHRISTI Peacheater Creek at Christie, OK 65
4 CAVESP Osage Creek near Cave Springs, AR 90
5 DUTCH Baron Fork at Dutch Mills, AR 105
6 KNSO2 Flint Creek near Kansas, OK 285
7 ELMSP Osage Creek near Elm Springs, AR 337
8 POWELL Big Sugar Creek near Powell, MO 365
9 SAVOY Illinois River at Savoy, AR 433

10 LANAG Indian Creek near Lanagan, MO 619
11 ELDO2 Baron Fork at Eldon, OK 795
12 BLUO2 Blue River near Blue, OK 1233
13 SLOA4 Illinois River South of Siloam Springs, AR 1489
14 WTTO2 Illinois River near Watts, OK 1645
15 TIFM7 Elk River at Tiff City, MO 2258
16 TALO2 Illinois River near Tahlequah, OK 2484
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Peschel et al. (2006) applied a partially distributed SWAT model
to the Upper Sabinal River Watershed (with basin area of 541 km2)
near Uvalde, Texas. They found that SSURGO-based flow simula-
tions were more closely correlated with gauge observed flow than
were their STATSGO-based counterparts. Mednick et al. (2008)
examined 18 research efforts which focused mainly on applying
hydrologic models using STATSGO and SSURGO soil data to con-
duct water quality and flow simulations. Although they confirmed
the preferability of higher resolution soil data for estimating water
quality variables, they concluded that the available findings are far
from unanimous and reveal no clear pattern as to how STATSGO
and SSURGO soil data usage affects model output. They pointed
out that a likely cause for this lack of an explanatory pattern is
the small sample size within and across the different studies.
Therefore, larger sample sizes are needed to support a further anal-
ysis of the potential benefits of using higher resolution SSURGO
data versus STATSGO soil data.

Further research guidance was produced by Moriasi and Starks
(2010) who applied the 2005 Soil and Water Assessment Tool
(SWAT2005) to three basins with drainage areas of 342, 154 and
75 km2. Their study analyzed the effects of soil and precipitation
dataset resolution on streamflow calibration parameters and sim-
ulation accuracy. Results were presented for different combina-
tions of soil and precipitation data sets and showed that
precipitation data resolution plays a more important role than soil
data resolution. They recommended that both STATSGO and
SSURGO soil datasets be used in combination with high-resolution
precipitation data, and that results should be reported for a range
of outputs from the simulations.

Since our study is about applications of the two soil data
sources, STAGSGO and SSURGO, which are available for USA, dis-
cussions here are therefore concentrated on those applications of
using STATSGO and SSURGO soil data within USA basins. There
are, however, similar studies using different soil data sources.
Romanowicz et al. (2005) in a case study in the Thyle catchment,
Belgium, used two types of soil data with different scales
(1:500,000 and 1:25,000) to test the sensitivity of the SWAT model
to the soil and land use data parametrisation. Their results showed
that the model is very sensitive to the quality of the soil and land
use data as well as how soil and land data were pre-processed.

Levick et al. (2004) added the internationally available Food and
Agriculture Organization of the United Nations (FAO) soil data (in
the scale of 1:5,000,000) in addition to STATSGO and SSURGO soil
data to the Automated Geospatial Watershed Assessment Tool
(AGWA) to transform into input parameters for hydrologic models
in their study. Their conclusion was that the integration of FAO
soils into AGWA is adequate for hydrologic modeling and can pro-
duce comparable results as from STATSGO and SSURGO soils data,
although their results had not been compared to observed runoff in
that study.

The number of recent studies on the topic of SSURGO-based
parameter estimation highlights the importance of this issue to
the hydrologic modeling community. Our study adds substantially
to the body of knowledge on this subject with a relatively large
sample size compared to other studies, particularly with respect
to the soil moisture analysis. While several studies have shown
the benefits of using higher resolution SSURGO data in deriving
parameters for hydrologic models, only Anderson et al. (2006) have
previously published results using the SAC-SMA model, and their
positive results were limited to a small number of basins. An
immediate benefit of this study will be the ability to advise NWS
RFCs which have performed calibration using STATSGO-based
parameters as to whether it is worthwhile to repeat the work with
SSURGO-based starting parameters. The results of this study will
also help to validate the physical assumptions in the method used
to estimate SAC-SMA parameters from soil data.
2. Methodology, study basins, and data

Koren et al.’s (2000) approach was used to produce the STATS-
GO-based parameters for this study and 2001 National Land Cover
Data (NLCD 2001) supplied the necessary variable land cover infor-
mation. The algorithms used in translating the STATSGO and SSUR-
GO soil data into model parameters are the same as were
developed by Zhang et al. (2011). Initial parameter values were cal-
culated for each soil polygon defined in the SSURGO data set and
were then transformed to gridded form at the desired resolution.
A total of 63 basins within the domain of the Arkansas-Red Basin
RFC (ABRFC) were selected to study the response of the modeled
stream flow and soil moisture to the use of the three different a pri-
ori parameter data sets described above. Table 1 and Fig. 1 shows
the basin information and location map.

Based on the availability of observed flow data, sixteen of these
basins were selected for a streamflow modeling comparison using
the HL-RDHM in distributed mode with a priori parameters. A sec-
ond set of 57 of the 63 basins covering a range of climate regimes
was selected to compare soil moisture simulations when STATSGO-
and SSURGO-based parameters were used. Monthly statistics were
computed. No parameter calibration was performed during the
simulation runs mentioned above. The resultant analyses seek to
determine whether use of finer resolution SSURGO data and vari-
able land cover data can improve distributed modeling efforts,
and under what conditions such improvements can most effec-
tively be realized.

2.1. Discharge study

Utilizing the three sets of a priori parameters, HL-RDHM was
executed with an hourly time step over 16 basins located in Okla-
homa, Arkansas and Missouri. The basin areas range from 37 km2

to 2484 km2. Although some of them are nested basins, we treated
each basin independently. Some of the selected basins were stud-
ied previously in the Distributed Model Intercomparison Project
(DMIP) (Smith et al., 2004; Reed et al., 2004). Therefore, extensive
hydrological data have been collected and are available for these
basins. Precipitation and evaporation are the main forcing data
needed for the model. Hourly gridded multi-sensor (NEXRAD and
gauge) -based precipitation data (Fulton et al., 1998; see ‘‘About
the multi-sensor data’’ http://www.nws.noaa.gov/oh/hrl/dmip/2/
ok_precip.html) for ABRFC are available from 1993 onward and
were used as model input. Gridded monthly climatology-based po-
tential evapotranspiration (PE) data and monthly vegetation-based
PE adjustment grids were used for the model runs. Hourly ob-
served flow data at each basin’s outlet were obtained from the
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http://www.nws.noaa.gov/oh/hrl/dmip/2/ok_precip.html


Fig. 1. Basin location map for discharge comparison. The solid dots are the outlets of basins. The dotted lines within the basins are river networks.

Z. Zhang et al. / Journal of Hydrology 420–421 (2012) 216–227 219
United States Geological Survey (USGS) and were used to compare
and verify model simulations. The archived USGS hourly flow data
are provisional since there was limited quality control performed
by the USGS. Additional quality control was carried out on the ob-
served hourly flow time series by comparing hourly totals to USGS
daily flow data (which had already been quality controlled by
USGS). If there were differences between the two, we flagged those
values as missing in the hourly flow time series.

Simulations were conducted over a period of 11 years from
October 1995 to September 2006. Using the same forcing data,
but with different parameters, three sets of simulated flow time
series were generated with HL-RDHM. Various summary statistics
as suggested in Smith et al. (2004) can be calculated from the out-
put by comparing each simulated flow time series to observed flow
data. In this paper, the modified correlation coefficient Rm defined
by McCuen and Snyder (1975) was calculated for each comparison.
Comparisons were made over the whole simulation period, for dif-
ferent events, and for different basin sizes. The flow peak error was
also compared among events.

2.2. Soil moisture analyses

Soil moisture simulations were carried out using SAC-HT
(NOAA/NWS/OHD, 2007), a modification of SAC-SMA which intro-
duced a heat transfer component to model frozen ground effects.
As a by-product, soil temperature and soil moisture are computed
for various depths over an area (Koren et al., 2008).

Fifty-seven basins (as shown in Fig. 2) within the ABRFC domain
were selected to conduct soil moisture comparisons and analyses
(some of which were included in the flow comparison study de-
scribed above). Basin areas range from 18 km2 to 5225 km2. The
basins span a wide range of climates as indicated in the climate



Fig. 2. Map of the outlets of 57 selected basins for soil moisture analyses with the vegetation (related to greenness) and river networks as the background.
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index column in Table 2. The climate index here is defined as the
ratio of annual precipitation, P, to annual potential evaporation
demand (PE), and ranges from 0.60 (very dry) to 1.25 (rather
wet) for the selected basins. In Table 2, the annual average vegeta-
tion greenness fraction (greenness), calculated from the National
Environmental Satellite, Data, and Information Service (NESDIS)
monthly data set (Gutman et al., 1995), is also included. The value
for this greenness index is more consistent because it does not de-
pend on the calibration process and does not require potential
evaporation data. It also correlates well (correlation coefficient
R = 0.94) with the P/PE index according to Koren (2008) internal
report). Because of these factors, the greenness index was chosen
for use in presenting soil moisture results.

Greenness values range from 0.26 to 0.67 for the selected
basins. The background of Fig. 2 shows the vegetation (related to
the greenness) variation across the area. Basin IDs, their location,
and some basic basin properties are listed in Table 2.

The study region contains a unique soil moisture data collection
network; the Oklahoma Mesonet. Since 1997, the Oklahoma
Mesonet has provided real-time data including soil moisture mea-
surements from more than 100 sites at up to four depths (5, 25, 60,
and 75 cm) (Brock et al., 1995). However, only 64 sites provide
measurements at all four depths. In this study, validation soil mois-
ture grids were derived from Mesonet point estimates using Koren
et al.’s (2006) method. All analyses were performed with daily soil
moisture saturation values, SR, for the period 1 January, 1997 to 31
October, 2003. Weighted averages of observed soil moisture (in
units of soil moisture saturation) over two soil layers (0–25 cm
and 25–75 cm) were derived. For each layer, point-type saturation
ratio values were interpolated to 4 km grid cells over Oklahoma
using an inverse distance weighting method. Weights were com-
puted on a daily basis depending on available station locations.
The gridded daily maps of SR were then used to generate time ser-
ies of basin-average soil moisture saturation. This observation-
based time series was then used to validate the model-simulated
time series of basin-averaged soil moisture produced using the
three sets of a priori parameters. In this portion of the study, the
user-defined SAC-HT soil moisture output layers were configured
to match the observation depths of the two soil moisture measure-
ment layers. Given that changes in soil moisture occur relatively
slowly, monthly averaged values of soil moisture formed the basis
for comparison.



Table 2
Properties of 57 basins for soil moisture comparison.

No. ID Lat Lon Area
(km2)

Elev.
(ft)

P/PE G

1 7144200 37.8322 �97.3881 3435 1326 0.78 0.41
2 7145200 37.5642 �97.8531 1683 1358 0.67 0.39
3 7145700 37.25 �97.4037 399 1157 0.84 0.41
4 7147070 37.7958 �97.0128 1103 1231 0.85 0.41
5 7147800 37.2242 �96.9948 4867 1083 0.85 0.42
6 7148400 36.815 �98.6481 2612 1292 0.64 0.33
7 7153000 36.3437 �96.7995 1491 803 0.84 0.44
8 7167500 37.7084 �96.2253 334 978 0.86 0.43
9 7169500 37.5084 �95.8336 2141 819 0.85 0.44

10 7170700 37.2667 �95.4683 96 796 0.98 0.48
11 7172000 37.0037 �96.3153 1152 763 0.84 0.44
12 7176500 36.4868 �96.0642 942 651 0.90 0.45
13 7177500 36.2784 �95.9542 2343 579 0.90 0.45
14 7184000 37.2817 �95.0325 510 818 1.05 0.49
15 7186000 37.2456 �94.5661 3013 833 1.04 0.56
16 7187000 37.0231 �94.5163 1105 887 0.99 0.6
17 7191000 36.5684 �95.1522 1165 622 0.99 0.52
18 7191220 36.3347 �94.6414 344 868 1.02 0.62
19 7230000 35.2217 �97.2139 665 966 0.85 0.43
20 7230500 35.1726 �96.932 1181 899 0.86 0.44
21 7231000 34.9654 �96.5125 2239 732 0.87 0.45
22 7243500 35.674 �96.0686 5224 633 0.87 0.45
23 7247000 34.919 �94.2988 526 570 1.12 0.66
24 7247250 34.7737 �94.5122 193 684 1.18 0.67
25 7247500 34.9126 �95.1558 316 541 1.01 0.6
26 7249400 35.1626 �94.4072 381 460 1.07 0.61
27 7249413 35.1657 �94.653 4575 388 1.07 0.63
28 7299670 34.3545 �99.7404 784 1426 0.65 0.28
29 7300000 34.9576 �100.221 3164 1941 0.60 0.26
30 7300500 34.8584 �99.5087 4054 1490 0.60 0.27
31 7301110 34.479 �99.3823 4862 1260 0.63 0.29
32 7303400 35.0117 �99.9037 1077 1715 0.61 0.28
33 7311000 34.3623 �98.2825 1747 938 0.77 0.39
34 7311200 34.6234 �98.5637 64 1215 0.78 0.37
35 7311500 34.2209 �98.4531 1597 924 0.77 0.35
36 7315700 34.0043 �97.567 1481 728 0.79 0.43
37 7316500 35.6264 �99.6684 2056 1901 0.59 0.3
38 7325,000 35.5309 �98.967 5118 1467 0.63 0.34
39 7326,000 35.1437 �98.4428 795 1254 0.71 0.42
40 7327,442 34.8926 �98.2331 30 1259 0.73 0.42
41 7327,447 34.8378 �98.1245 160 1184 0.74 0.42
42 7328,180 34.9715 �97.5848 19 1024 0.84 0.43
43 7329,852 34.4954 �96.9886 114 897 0.91 0.45
44 7334,000 34.2715 �95.9122 2814 440 0.94 0.51
45 7335,700 34.6384 �94.6127 104 887 1.25 0.67
46 BLKO2 36.8114 �97.2773 4813 967 0.78 0.42
47 BLUO2 33.997 �96.2411 1232 504 0.94 0.46
48 CBNK1 37.1289 �97.6014 2056 1108 0.74 0.41
49 DUTCH 35.8801 �94.4866 105 986 1.09 0.61
50 ELDO2 35.9212 �94.8386 795 701 1.05 0.59
51 ELMSP 36.222 �94.2885 337 1052 1.03 0.64
52 KNSO2 36.1865 �94.7069 285 855 1.02 0.62
53 SAVOY 36.1031 �94.3444 432 887 1.05 0.62
54 SPRING 36.2162 �94.6044 155 1173 1.03 0.63
55 TALO2 35.9229 �94.9236 2483 664 1.03 0.62
56 TIFM7 36.6315 �94.5869 2258 751 1.00 0.62
57 WTTO2 36.1301 �94.5722 1644 894 1.03 0.63
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3. Results

3.1. Parameter comparison for CONUS and selected basins

Parameters were derived to cover CONUS. Although we did not
run simulations over this domain, the effect of vegetation on
parameters can be more easily verified when we visually examined
CONUS data sets. Fig. 3 shows one of 11 derived SAC-SMA param-
eters, upper zone tension water capacity, UZTWM, generated using
the three tested a priori parameter sets. Examination of Fig. 3a, b,
and c reveals similar spatial patterns for all three cases. The areas
that differ most between Figs. 3a–c generally correspond to dense
forest cover (Fig. 3d), illustrating the impact of the LULC data. This
is conceptually correct, because water losses in forest areas are
usually relatively high and correspond to a higher capacity of the
upper zone tension water. Comparing the forest map (Fig. 3d)
and the two STATSGO-based UZTWM maps, one can see the differ-
ences over the northeastern part of the US which arise from the dif-
fering land cover assumptions. Similar differences are present in
the other parameters as well (not shown). The effect of land use
and land cover is reflected through the curve number, CN, and
hence the upper layer thickness and other SAC-SMA parameters
(Koren et al., 2000). The differences between Fig. 3b and c shows
the effect of using different soil data, as both cases take the land
use and land cover information into account. Comparisons shown
in this figure provide a general sense of the impact of soil data
source and the use of LULC data on derived parameter values.

Fig. 4 shows the percentage change among the three sets of
UZTWM maps across the CONUS. Similarities between Figs. 4a
and d can be noted and are due to 4a’s use of variable LULC data.
The variation of percentage change between SSURGO + LULC and
STATSGO ONLY shown in Fig. 4b is larger than in Fig. 4a, indicating
the larger effect from the combined use of soil and LULC data.
Fig. 4c shows the percentage difference between STAGSGO + LULC
and SSURGO + LULC highlighting the effect of using different soil
data. High spatial variation exists in Fig. 4c due to the soil data dif-
ferences between SSURGO and STATSGO. It also illustrates that the
impact on UZTWM of using a different soil data set is greater than
that of incorporating LULC data. Fig. 4c also shows that the differ-
ences between SSURGO and STATSGO are not uniform across the
CONUS. Part of the reason is that soil texture variation is larger
in some areas and these variations can be represented in SSURGO
data, but not in the STATSGO data set. This is due to SSURGO’s
coarse resolution in that either one value represents otherwise
quite variable values or one value is the result of aggregating soil
layers and components.

Similar impacts are seen on the other SAC model parameters as
well (readers can find the details regarding the SAC-SMA model
and its parameters in Burnash et al., 1973). Using the STATSGO
ONLY case as a baseline, Fig. 5a shows the percentage change of
CONUS-averaged SAC-SMA parameters from the STATSGO + LULC
and SSURGO + LULC cases. Parameters in the SSURGO + LULC case
exhibit much larger percentage change values than those based
on STATSGO + LULC data, suggesting that soil data differences have
a larger effect on values of SAC-SMA parameters than does LULC
data (UZFWM is an exception although the difference is small).
In order to avoid the cancelling out of positive and negative values
of percentage change when individual cells are averaged to form a
single overall value, a second plot was created based on the abso-
lute difference in each cell (Fig. 5b). It shows that for all of the
parameters, the absolute percentage change values are much lar-
ger between the SSURGO + LULC and STATSGO ONLY cases than be-
tween the STATSGO + LULC and STATSGO-ONLY cases. While in
Fig. 5a, the percentage change values for several parameters
(UZTWM, UZFWM, UZK, ZPERC, REXP, LZSK, LZPK, and PFREE) are
relatively small for both soil parameter cases, Fig. 5b depicts large
absolute percentage change values for the SSURGO + LULC case.
From this, it can be deduced that the SSURGO-based SAC-SMA
parameters are more variable and therefore better reflect the scale
of variation in the soil data than are the STATSGO-based ones.

Fig. 6 provides a closer look at the distribution of UZTWM with-
in the selected basins for each of the three study cases. In general,
the STATSGO ONLY-based UZTWM field (Fig. 6a) features smaller,
less variable values as compared to the STATSGO + LULC and
SSURGO + LULC cases (Figs. 6b and c). Note that there is higher
spatial variability within the four smallest basins in the SSURGO +
LULC case (Fig. 6c) and less variability over these same basins in
the two STATSGO-based cases (Fig. 6a and b). From this, it can be



UZTWM (mm)

(a) STATSGO ONLY (b) STATSGO+LULC

(c) SSURGO+LULC (d) Forest Map

Fig. 3. (a–c) Distribution for one of the 11 derived SAC-SMA parameters, UZTWM, under different conditions and (d) forest map.

Percentage 
Change %

(a) STATSGO+LULC vs 
STATSGO ONLY

(b) SSURGO+LULC vs 
STATSGO ONLY

(c) SSURGO+LULC vs 
STAGSO+LULC

(d)  Forest Map

Fig. 4. Percentage change of UZTWM under different conditions.
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seen that the high resolution of the SSURGO soil data leads to a bet-
ter depiction of parameter variation over smaller basins.

3.2. Flow simulation results

The scatter plot of Fig. 7 shows a comparison of the modified
correlation coefficient (McCuen and Snyder, 1975), Rm, between
flow output from each soil parameter case and the observed flow
with respect to basin areas. The modified Rm was used because it
measures the goodness-of-fit in both shape and volume of
hydrographs (McCuen and Snyder, 1975). In order to see the effect
of parameter source on different size basins more clearly, linear
trend lines are plotted for three cases as well. From these trend
lines, it can be seen that the SSURGO + LULC case performs better
than the other two STATSGO cases for small to mid-size basins (be-
cause the solid line is above the other two lines for basin areas of
up to approximately 1000 km2). Results for SSURGO based param-
eters are more consistent with a trend toward being slightly better
as basin area increases. However, for large basins (areas roughly
above 1000 km2), worse results exist for SSURGO + LULC when
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Fig. 5a. Percentage change of 11 derived SAC-SMA parameters when compared to
STATSGO ONLY.
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Fig. 5b. Absolute percentage change of 11 derived SAC-SMA parameters when
compared to STATSGO ONLY.
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compared with the two STATSGO cases. From these results, it can
be seen that the use of high-resolution SSURGO soil data based
parameters can improve simulations for small to mid-size basins.
This observation is consistent with the fact that compared to either
of the two STATSGO cases, the SSURGO + LULC parameters better
reflect the natural variability in the soils data. We cannot com-
pletely explain why worse results emerge from use of the SSURGO
parameters for the large basins as compared to the STATSGO cases.
It is worth noting though, that relatively few large basins were ana-
lyzed. Additional studies that include more large basins are
needed.

In addition to the broad overall comparison of flow simulations,
event-based flow statistics were also analyzed. About 32 events per
basin were selected within the analysis period. These precipitation/
runoff events were the largest in each basin for which complete
observations were available. Fig. 8 shows the comparison of the
event-based averaged Rm for the three cases with respect to basin
areas. The overall trends show little difference between the SSUR-
GO and STATSGO + LULC cases, with the SSURGO + LULC case per-
forming slightly better for small to mid-size basins and worse for
several large basins. The trendline for the STATSGO ONLY case is
above the other two, indicating better overall event-based results.
Adding variable land use and land cover information may affect
those parameters that are sensitive to fast overland flow values.

Complementing the Rm comparison, peak flow values and their
associated timing were also compared for selected events (Fig. 9)
with respect to basin areas. Looking at the trendlines in Fig. 9a,
the peak errors for the three cases are similar, with the SSURGO +
LULC case performing slightly better for small and mid-size basins
and somewhat worse for large basins as compared to STATSGO
cases (within the limited number of basins selected). The trend-
lines in Fig. 9b indicate that the peak time error for the three cases
are similar as well, with the STATSGO ONLY case performing
slightly better overall. This again confirms the observations made
from Fig. 7, that using SSURGO + LULC (versus STATSGO) based a
priori parameters can improve model simulations over the majority
of basins, including small and mid-size basins.
3.3. Soil moisture simulation results

Similar to the flow analysis, basin-averaged soil moisture time
series were generated for three sets of a priori parameters:
STATSGO ONLY, STATSGO + LULC, and SSURGO + LULC. To match
the soil moisture observation layers, variable depth HL-RDHM soil
moisture was recalculated to fixed soil layers. For the monthly
analysis, monthly soil moisture saturation values, SRs, were first
calculated for three model cases: STATSGO ONLY (SRSTATSGO ONLY),
STATSGO + LULC (SR

STATSGO+LULC
) and SSURGO + LULC (SRSSURGO+LULC).

Then, the differences between simulated SRs and measured SR
were evaluated for all three cases for both the upper and
lower layers. The ratio of the absolute values of the differ-
ences, (|SRSSURGO+LULC � SRMEASURED|/|SRSTATSGO ONLY � SRMEASURED|),
(|SRSSURGO+LULC � SRMEASURED|/|SRSTATSGO+LULC � SRMEASURED|), and
(|SRSTATSGO+LULC � SRMEASURED|/|SRSTATSGO ONLY � SRMEASURED|) serves
as an indicator as to which simulated results are closer to mea-
sured values, and therefore how soil data and land cover data im-
pact the simulation. When the ratio is less than one, it means that
the numerator is closer to the observed soil moisture than is the
denominator, while the reverse is true for a ratio larger than one.
When the ratio is equal to one, both cases are the same. Consider-
ing uncertainties exist in soil data, in soil moisture measurements,
and in the model, cases are considered to have similar performance
if the ratio differs from 1.00 by less than 15%. In other words, the
case in the numerator is considered better than the case in
the denominator when the ratio is less than 0.85, the case in the
denominator is considered better than the case in the numerator
when the ratio is larger than 1.15, and the case in the denominator
is considered close to the case in the numerator when the ratio is
between 0.85 and 1.15. Since we are comparing monthly values
for 57 basins, there are a total of 12 � 57 = 684 cells (values) that
can be compared in the basin-month 2-D diagrams of Figs. 10–
12. By looking at the number of cells which fall in three zones (bet-
ter, close, or worse) for each comparison, we can determine how
each set of a priori parameters affects the simulation results. Figs.
10–12 use three colors, grey, black, and white, to represent better,
worse, or close comparisons, respectively.

Table 3 provides soil moisture comparison statistics for simula-
tions using three pairs of a priori parameters. Focusing on the
upper soil layer first, in the comparison of simulated soil moisture
with measured data for the SSURGO + LULC and STATSGO ONLY
cases, 45% of the values are better, 25% are close, and 30% are
worse. Overall 70% of the SSURGO + LULC based results are either
better than or close to those of the STATSGO ONLY case. Although
using STATSGO soil data with consideration of variable land cover
provides some improvement over using STATSGO ONLY data (26%
of cases are better), the improvement is less than that provided
when variable land cover is used with SSURGO-based parameters.
In fact, most cases (56%) in this second comparison fall into the
‘‘close’’ category. In the final set of comparisons (SSURGO + LULC
versus STATSGO + LULC), the difference lies only in the soil data.
The improvement when using SSURGO + LULC over STATS-
GO + LULC of 40% is in between the other two cases mentioned.
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It can be seen from the preceding upper soil layer comparison
that simulated soil moisture can be improved through use of both
SSURGO soil data and variable LULC information; however, inspec-
tion of Table 3 reveals that the benefit is greater from the SSURGO
data. This suggests that soil data play a bigger role than land cover
data in deriving accurate a priori parameters for the SAC-SMA
model, and therefore in the model simulations. Table 3 also shows
that the results across the three comparison cases are similar for
the lower soil layer. The effects of soil and land cover data on soil
moisture values in this layer are more muted. This could indicate
that the effect of using different soil data and land cover on soil
moisture simulations may be related to the more dynamic
processes of the upper soil layer. Another possible reason is the
inadequate modeling of water balance partitioning in the lower
zone of the SAC-SMA model as described by Koren et al. (2008).

To determine if the soil moisture comparison results are related
to basin size (19–5225 km2) and greenness (range from 0.26 to
0.67) among the 57 basins, results were sorted and are plotted in
Figs. 10–12 for the different simulation pairs listed Table 3. Figs.
10a and b are for the upper soil layer and feature the same number
of black, white, and grey cells. Fig. 10a is sorted by area and
Fig. 10b is sorted by greenness. From Fig. 10a, it can be seen that
the SSURGO + LULC based soil moisture estimation is better than
STATSGO ONLY based for most of the smaller basins (dotted line
box). The SSURGO + LULC based soil moisture simulations are also
better for most of large basins as compared to the STATSGO ONLY
based simulations (as indicated by the right dotted line box),
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although the distribution is not as clear as for smaller basins.
Focusing on Fig. 10b, it is more evident that SSURGO + LULC based
soil moisture simulations are better during all months for basins
that have relatively high greenness values as indicated in the dot-
ted box on the right. SSURGO + LULC based simulations are also
generally better than STATSGO ONLY based simulations for basins
with smaller greenness values as shown in the left dotted box.
From Fig. 10, we can see the improvement from using SSURGO soil
data and variable land cover data. The soil moisture comparison is
consistent with the earlier flow comparison in that using higher
Fig. 10. Monthly soil moisture comparison results of 57 basins for upper soil layer sorte
STATSGO ONLY performs better, grey cells (308) indicate better performance from SSURG
error. Dotted boxes highlight the zones that better performance from high resolution da
resolution soil data can improve simulations, especially for smaller
basins. Sorted plots for the lower layer (not included) do not show
as clear of a pattern as those for upper soil layer.

Fig. 11 shows the sorted plot comparing the STATSGO + LULC
and STATSGO ONLY simulations. The sole difference between the
two is whether variable land cover data were used instead of a uni-
form land cover assumption. There is no obvious tread in the area-
sorted plot (Fig. 11a). Although we can see improved results for
small and large greenness areas as indicated by two dotted boxes
(Fig. 11b), the majority of cases (56%) are close. In summary, the
improvement seen by explicitly using variable land cover data is
not as large as that gained by using both soil data and variable
land-cover data as shown in Fig. 10. Part of the reason for this is
that the land cover and land use information was already indirectly
included in the STATSGO ONLY case. In this case, the NRCS hydro-
logic soil group information was used in deriving the CN, which in
turn was used in the upper zone thickness estimation and the esti-
mation of the rest of SAC-SMA parameters. Because the hydrologic
soil group is directly related to soil properties, which is in turn
linked to the land cover and land use, the STATSGO ONLY case in-
cludes indirect land cover information. This acts to lessen the dif-
ference with respect to the STATSGO + LULC case.

Fig. 12 shows the sorted plot for comparison of the SSURGO +
LULC and STATSGO + LULC based simulations. Since the difference
between the two is the type of soil data used, the results show the
gain from using SSURGO soil data as opposed to STATSGO data.
Forty percentage of the cases show better results for SSURGO +
LULC while 31% of the cases show worse performance. About 69%
of the using SSURGO + LULC are better or close to STATSGO + LULC.
Recall that in the results shown in Fig. 10 where the difference be-
tween the two cases are the type of soil data and use of land cover
data, 45% of the cases showed better results for SSURGO + LULC.
Comparing the results in Fig. 10 and Fig. 12, we can see that the
majority of the gain comes from using SSURGO soil data as op-
posed to using land cover data. From the area sorted plot
(Fig. 12a), it can be seen that the better results are concentrated
over the smaller basins while the results are mixed for mid-size
to large basins. This is consistent with the findings in the previous
flow simulation comparisons. In the greenness sorted plot
(Fig. 12b), better results are mostly concentrated inside the dotted
line box where greenness values are higher.
d by area (Fig. 10a) and greenness (Fig. 10b) respectively. Black cells (204) indicate
O + LULC, and white cells (in number of 172) are results that are inside the margin of
ta of SSURGO + LULC than from low resolution data of STATSGO ONLY.



(a)

(b)

J
F

M
A 

M
J

J
A

S
O

N
D

M
on

th

Area

Greenness

J
F

M
A 

M
J

J
A

S
O

N
D

M
on

th

Fig. 11. Monthly soil moisture comparison results of 57 basins for upper soil layer sorted by area (Fig. 11a) and greenness (Fig. 11b) respectively. Black cells (118) indicate
better performance from STATSGO ONLY, grey cells (180) indicate better performance from STATSGO + LULC, and white cells (total 386) are results that are inside the margin
of error. Dotted boxes highlight the zones that better or close performance from SSURGO + LULC to the STATSGO ONLY.

(a)

(b)
Greenness

M
on

th
J 

 F
  M

 A
 M

  J
 J

 A
 S

 O
 N

 D

M
on

th
J 

F 
M

 A
 M

 J
 J

 A
 S

 O
 N

 D

Area

Fig. 12. Monthly soil moisture comparison results of 57 basins for upper soil layer sorted by area (Fig. 12a) and greenness (Fig. 12b). Black cells (215) are indicate better
STATSGO + LULC performance, grey cells (273) indicate better SSURGO + LULC performance, and white cells (196) are results that are inside the margin of error. Dotted boxes
highlight the zones that better performance from high resolution data of SSURGO + LULC than from low resolution data of STATSGO + LULC.

Table 3
Summary of simulated monthly soil moisture comparisons for different cases for 57 basins.

Cases Soil layer Better (grey) # and % Close (white) # and % Worse (black) # and % % of Close or better

SSURGO + LULC vs. STATSGO ONLY Upper 380–45% 172–25% 204–30% 70%
Lower 217–32% 215–31% 252–37% 63%

STATSGO + LULC vs. STATSGO ONLY Upper 180–26% 386–56% 118–17% 83%
Lower 117–17% 467–68% 100–15% 85%

SSURGO + LULC vs. STATSGO + LULC Upper 273–40% 196–29% 215–31% 69%
Lower 225–33% 199–29% 260–38% 62%
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4. Conclusions

The advantages of distributed modeling are more fully realized
when variable gridded parameters are used. Good estimation of a
priori gridded parameters is important for implementing a distrib-
uted model, and is critical for meaningful and efficient calibration
of the model. The NWS Office of Hydrologic Development has
developed a research distributed hydrologic model (HL-RDHM)
that uses SAC-SMA as its rainfall/runoff component. Coarse STATS-
GO soil data and a uniform land use/land cover assumptions were
initially used to derive a priori parameters for the SAC-SMA model.
Another set of parameters was subsequently derived with a
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combination of coarse STATSGO soil data and gridded land cover
data. While the spatially variable STATSGO data enabled develop-
ment of distributed parameters, its coarse resolution did not allow
for realistic representation of parameter variation at the fine spa-
tial scale important for hydrologic events such as flash floods. With
this in mind, finer-scale SSURGO soil data were used to derive a
new set of parameters. To guide this development and the use of
such parameters, a study was made of the impacts of such data
on HL-RDHM streamflow and soil moisture simulations to deter-
mine if improvements anticipated in theory are confirmed in prac-
tice. In this paper, comparisons were made and the impacts on
model simulations were presented using discharge of 16 selected
basins, and soil moisture from 57 basins. Based on these results
we can conclude that:

(1) Use of land cover data and higher resolution soil data results
in different a priori SAC-SMA parameters.

(2) Overall discharge simulations for three sets of a priori
parameters are similar, but improvement can be observed
for smaller basins when SSURGO-based a priori parameters
are used.

(3) Use of SSURGO based a priori parameters can improve soil
moisture simulations over the use of either STATSGO ONLY
or STATSGO + LULC based a priori parameters.

(4) Use of variable land cover based a priori parameters can
improve soil moisture simulations.

(5) The incremental improvement in soil moisture simulation
performance from using detailed SSURGO soil data is greater
than from using variable land cover data.

In conclusion, use of SSURGO + LULC-based SAC-SMA parame-
ters is preferable for HL-RDHM distributed modeling. The advanta-
ges of using SSURGO-based parameters can be further realized in
applications such as the estimation of soil moisture over large
areas and more importantly, for flash flood studies focusing on
small basins or areas. The results presented in this paper are based
on non-calibrated distributed modeling. Calibration may reduce
the differences between a priori parameterization schemes; how-
ever, the amount of reduction will likely dependent on the scale
and type of application. Interior points with no calibration could
still benefit. Even if the parameters and results converged or nar-
rowed from calibration we believe that the finer scale data provide
the modeler with more confidence that the model is getting the
right answer for the right reason.
References

Abbott, M., Bathurst, J., Cunge, J., O’Connell, P., Rasmussen, J., 1986. An introduction
to the European Hydrological System—Systeme Hydrologique European (SHE),
1. History and philosophy of a physically-based, distributed modeling system. J.
Hydrol. 87, 45–59.

Anderson, R., Koren, V., Reed, S., 2006. Using SSURGO data to improve Sacramento
model a priori parameter estimates. J. Hydrol. 320, 103–116.

Bell, V.A., Moore, R.J., 1998. A grid-based distributed flood forecasting model for use
with weather radar data: Part 2. Case studies. Hydrol. Earth Syst. Sci. 2 (3), 283–
298.

Beven, K., 2006. A manifesto for the equifinality thesis. J. Hydrol. 320 (1–2), 18–36.
Brock, F.V., Crawford, K.C., Elliott, R.L., Cuperus, G.W., Stadler, S.J., Johnson, H., Eillts,

M.D., 1995. The Oklahoma Mesonet: a technical overview. J. Atmos. Oceanic
Technol. 12, 5–19.

Burnash, R.J.C., Ferral, R.L., McGuire, R.A., 1973. A Generalized Streamflow
Simulation System-Conceptual Modeling for Digital Computers. Technical
Report, United States Department of Commerce, National Weather Service
and State of California, Department of Water Resources, Sacramento, 204pp.
Carpenter, T.M., Gerorgakakos, K.P., 2004. Impacts of parametric and radar rainfall
uncertainty on the ensemble simulations of a distributed hydrologic model. J.
Hydrol. 298, 202–221.

DMIP web page. About the Stage III Data. <http://www.nws.noaa.gov/oh/hrl/dmip/
stageiii_info.htm>.

Fulton, R., Breidenbach, J., Seo, D.-J., Miller, D., O’Bannon, T., 1998. The WSR-88D
rainfall algorithm. Weather Forecasting 13, 377–395.

Gutman, G., Tarpley, D., Ignatov, A., Olson, S., 1995. The enhanced NOAA global land
dataset from the advanced very high resolution radiometer. Bull. Am. Meteorol.
Soc. 76, 1141–1156.

Koren, V.I., 2008. Parameterization of SAC-SMA Model Specifically for Dry Basins.
Part I: Derivation of Climate Adjustment Relationships. OHD Internal Report,
24pp. <http://amazon.nws.noaa.gov/articles/HRL_Pubs_PDF_May12_2009/
New_Scans_Links_September2009/Report_Part.I.doc>.

Koren, V.I., Smith, M., Wang, D., Zhang, Z., 2000. Use of soil property data in the
derivation of conceptual rainfall-runoff model parameters. In: Proceedings of
the 15th Conference on Hydrology. AMS, Long Beach, CA, pp. 103–106.

Koren, V.I., Reed, S.M., Smith, M., Zhang, Z., Seo, D.J., 2004. Hydrology laboratory
research modeling system (HL-RMS) of the US National Weather Service. J.
Hydrol. 291, 297–318.

Koren, V., Moreda, F., Reed, S., Smith, M., Zhang, Z., 2006. Evaluation of a grid-based
distributed hydrological model over a large area. In: Predictions in Ungauged
Basins: Promise and Progress. Proceedings of Symposium S7 Held During the
Seventh IAHS Scientific Assembly at Foz do Iguacu, Brazil, April 2005, vol. 303.
IAHS Publication, pp. 47–56.

Koren, V., Moreda, F., Smith, M., 2008. Use of soil moisture observations to improve
parameter consistency in watershed calibration. Phys. Chem. Earth 33 (17–18),
1068–1080.

Kuzmin, V., Seo, D.-J., Koren, V., 2009. Fast and efficient optimization of hydrologic
model parameters using a priori estimates and stepwise line search. J. Hydrol.,
353, 1–2, 1–18.

Leavesley, G.H., Litchy, R.W., Troutman, M.M., Saindon, L.G., 1983. Precipitation-
Runoff Modeling System – User’s Manual: US Geological Survey Water-
Resources Investigations Report 83-4238, 207pp.

Levick, L.R, Semmens, D.J., Guertin, D.P., Burns, I.S., Scott, S.N., Unkrich, C.L.,
Goodrich, D.C., 2004. Adding global soils data to the Automated Geospatial
Watershed Assessment Tool (AGWA). In: Proc. of 2nd International Symposium
on Transboundary Waters Management, Tucson, AZ (November 16–19).

McCuen, R.H., Snyder, W.M., 1975. A proposed index for comparing hydrographs.
Water Resour. Res. 11 (6), 1021–1024.

Mednick, A.C., Sullivan, J., Watermolen, D.J., 2008. Comparing the Use of STATSGO
and SSURGO Soils Data in Water Quality Modeling: A Literature Review. Bureau
of Science Services, Wisconsin Department of Natural Resources. Issue 60.
<http://www.dnr.wi.gov/org/es/science/publications/PUB_SS_760_2008.pdf>.

Moriasi, D.N., Starks, P.J., 2010. Effects of the resolution of soil dataset and
precipitation dataset on SWAT2005 streamflow calibration parameters and
simulation accuracy. J. Soil Water Conserv. 65 (2), 63–78.

NOAA, National Weather Service, Office of Hydrologic Development, 2007. Frozen
Ground SAC Model Enhancement Algorithm Description Document:
Sacramento Model Enhancement to Handle Implications of Frozen Ground on
Watershed Runoff. Version 3.4 (7/18/2007).

Peschel, J.M., Haan, P.K., Lacy, R.E., 2006. Influences of soil dataset resolution on
hydrologic modeling. J. Am. Water Resour. Assoc. 42 (5), 1371–1389.

Reed, S.M., 1998. Use of Digital Soil Maps in a Rainfall-Runoff Model. Doctoral
Dissertation, The University of Texas at Austin, Austin, Texas.

Reed, S.M., Koren, V., Smith, M., Zhang, Z., Moreda, F., Seo, D.-J., Participants, D.M.I.P.,
2004. Overall distributed model intercomparison project results. J. Hydrol. 298,
27–60.

Romanowicz, A.A., Vanclooster, M., Rounsevell, M., La Junesse, I., 2005. Sensitivity of
the SWAT model to the soil and land use data parametrisation: a case study in
the Thyle catchment, Belgium. Ecol. Modell. 187 (1), 27–39 (Special Issue on
Advances in Sustainable River Basin Management (10 September 2005)).

Smith, M., Seo, D.J., Koren, V.I., Reed, S.M., Zhang, Z., Duan, Q., Moreda, F., Cong, S.,
2004. The distributed model intercomparison project (DMIP): motivation and
experiment design. J. Hydrol. 298, 4–26.

Soil Survey Staff, 2011a. Natural Resources Conservation Service, United States
Department of Agriculture. US General Soil Map (STATSGO2). <http://
soils.usda.gov/survey/geography/statsgo/> (accessed 16.12.11).

Soil Survey Staff, 2011b. Natural Resources Conservation Service, United States
Department of Agriculture. Soil Survey Geographic (SSURGO) Database for
Survey Area, State. <http://soils.usda.gov/survey/geography/ssurgo/>. (accessed
16.12.11).

Wigmosta, M.S., Vail, L.W., Lettenmaier, D.P., 1994. A distributed hydrology-
vegetation model for complex terrain. Water Resour. Res. 30 (6), 1665–1679.

Williamson, T., Odom, K.R., 2007. Implications of SSURGO vs. STATSGO data for
modeling daily streamflow in Kentucky. In: ASA-CSSA-SSSA 2007 International
Annual Meetings, November 4–8, New Orleans, Louisiana.

Zhang, Y., Zhang, Z., Reed, S., Koren, V., 2011. An enhanced and automated approach
for deriving a priori SAC-SMA parameters from the soil survey geographic
database. Comput. Geosci. 30 (2), 219–231.

http://www.nws.noaa.gov/oh/hrl/dmip/stageiii_info.htm
http://www.nws.noaa.gov/oh/hrl/dmip/stageiii_info.htm
http://amazon.nws.noaa.gov/articles/HRL_Pubs_PDF_May12_2009/New_Scans_Links_September2009/Report_Part.I.doc
http://amazon.nws.noaa.gov/articles/HRL_Pubs_PDF_May12_2009/New_Scans_Links_September2009/Report_Part.I.doc
http://www.dnr.wi.gov/org/es/science/publications/PUB_SS_760_2008.pdf
http://soils.usda.gov/survey/geography/statsgo/
http://soils.usda.gov/survey/geography/statsgo/
http://soils.usda.gov/survey/geography/ssurgo/

	SAC-SMA a priori parameter differences and their impact on distributed hydrologic model simulations
	1 Introduction
	2 Methodology, study basins, and data
	2.1 Discharge study
	2.2 Soil moisture analyses

	3 Results
	3.1 Parameter comparison for CONUS and selected basins
	3.2 Flow simulation results
	3.3 Soil moisture simulation results

	4 Conclusions
	References


